SMAQMD BACT CLEARINGHOUSE

ACTIVE							
CATEGORY Type: PRINTING PROCESS							
BACT Cate	gory: < 6,371 LB	BS/YEAR U	INCONTROLLE	DV			
BACT Dete	ermination Numbe	er:	365	BACT Dete	erminatio	on Date:	7/23/2024
			Equipment	Information	า		
Permit Nur	mber: N/A 0	Generic BA	ACT Determinati	on			
Equipment	t Description:	FLEXO	GRAPHIC NON	-HEATSET BC	X FINIS	HING	
Unit Size/F	Rating/Capacity:	Minor S	Source BACT				
Equipment							
		BACT	Determina	ation Infor	matio	n	
District	Contact: Felix T	rujillo	Phone No.: (279	9) 207-1154	email:	ftrujillo@airquality.org	
ROCs	Standard:	See Comm	ents				
	Technology						
	Description:	Achieved in	Practice				
NOV	Standard:	No Standar	d				
	Technology						
	Description:						
	Basis:	No. Otanalan	-1				
SOx	Standard:	No Standar	a				
	Description:						
	Basis:						
PM10	Standard:	No Standar	d				
	Technology						
	Basis:						
PM2.5	Standard:	No Standar	d				
	Technology						
	Description:						
0.0	Standard:	No Standar	d				
	Technology						
	Description:						
	Standard	No Standar	d				
	Technology						
	Description:						
Basis:							
Comments: Use of materials compliant with SMAQMD Rule 450 - Graphic Arts, use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water-based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water-based inks/coatings. See BACT Determination Evaluation for T-BACT determination.							

SMAQMD BACT CLEARINGHOUSE

ACTIVE					
CATEGORY Type: PRINTING PROCESS					
BACT Cate	gory: ≥ 6,371 LB	S/YEAR UNCONTROLLE	ED V		
BACT Dete	ermination Numbe	er: 366	BACT Determination	n Date:	7/23/2024
		Equipmen	t Information		
Permit Nu	mber: N/A 0	Generic BACT Determina	tion		
Equipment	t Description:	FLEXOGRAPHIC NO	N-HEATSET BOX FINISH	ING	
Unit Size/F	Rating/Capacity:	Minor Source BACT			
Equipmen	t Location:				
		BACT Determin	nation Information	1	
District	Contact: Felix T	Trujillo Phone No.: (27	79) 207-1154 email: 1	ftrujillo@airquality.org	
ROCs	Standard:	See Comments			
	Technology				
	Description:	Achieved in Practice			
NOv	Standard:	No Standard			
NUX	Technology				
	Description:				
	Basis:				
SOx	Standard:	No Standard			
	Description:				
	Basis:				
PM10	Standard:	No Standard			
	Technology				
	Basis:				
PM2.5	Standard:	No Standard			
	Technology				
	Description:				
0.0	Standard:	No Standard			
	Technology				
	Description:				
	Standard:	No Standard			
	Technology				
Description:					
Basis:					
Comments: Use of materials compliant with SMAQMD Rule 450 - Graphic Arts, use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water-based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water-based inks/coatings. A VOC control device that has an overall system efficiency (collection and destruction) of at least 98.5% for VOC. See BACT determination evaluation for T-BACT					

BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION

	DETERMINATION NO.:	365 & 366
	DATE:	7/23/24
	ENGINEER:	Felix Trujillo, Jr.
Category/General Equip Description:	Printing Process	
Equipment Specific Description:	Printing Press/Box Finishing Heatset	- Flexographic – Non-
<6,371 lbs VOC/year (BACT #149) and		#149) and #176)
Previous BACT Det. No.:	149 & 176	

A review of the District's permit database showed the District's only flexographic printing presses are for box finishing corrugated packaging operations. Therefore, this BACT determination will only apply to box finishing operations. The San Joaquin Valley Air Pollution Control District's graphic arts rule (Rule 4607) includes a category for flexographic specialty inks with VOC content limits that are higher than other flexographic inks. Sacramento Air Quality Management District's Rule 450 (Graphic Arts Operations) does not include a category for flexographic specialty inks. Therefore, SMAQMD Rule 450 is more stringent for these inks. The SMAQMD rule does not include any heat set flexographic printing operations. Therefore, this BACT will not address heat set flexographic printing operations.

BACT ANALYSIS

A: ACHIEVED IN PRACTICE (Rule 202, §205.1a)

The following control technologies are currently employed as BACT for flexographic printing presses that are non-heatset by the following air pollution control districts:

United States Environmental Protection Agency (US EPA)

<u>BACT</u>

Source: EPA RACT/BACT/LAER Clearinghouse

A search of the EPA BACT Clearinghouse under Process Code 41.021 (Printing - Packaging) for a time period of 01/01/2014 to 05/03/24 resulted in the list down below for flexographic printing.

RBLC ID	Facility Name	Permit No.	Permit Date
WI-0297	Green Bay Packaging, Inc.	79-DMM-129	12/10/19
IL-0127	Winkpak Heat Seal Corporation	14040006	10/05/18
LA-0321	Graphic Packaging International, Inc.	PSD-LA-819	04/10/17
IA-0112	American Packaging Corporation	16-A-013-P	04/04/16

All of the above permits were based on PSD-BACT, which is based on a case-by-case basis and applied to major sources. This BACT will only apply to minor sources, therefore, these PSD BACTs will not be referenced under this BACT determination.

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

40 CFR 63 Subpart KK – National Emission Standards for the Printing and Publishing Industry

This regulation applies to facilities at which publication rotogravure, product and packaging rotogravure, or wide-web flexographic printing presses are operated and that are located at a plant site that is a major source of HAPs as defined in 40 CFR 63 Subpart A, §63.2. Although this NESHAP applies only to major sources of HAPs, it will be considered achieved in practice in the T-BACT evaluation for minor sources.

Subpart KK limits organic HAP emissions of product and packaging rotogravure or wide-web flexographic printing (capable of printing substrates greater than 18 inches in width) to the following:

§63.825(b) Each product and packaging rotogravure or wide-web flexographic printing affected source shall limit organic HAP emissions to no more than 5 percent of the organic HAP applied for the month; or to no more than 4 percent of the mass of inks, coatings, varnishes, adhesives, primers, solvents, reducers, thinners, and other materials applied for the month; or to no more than 20 percent of the mass of solids applied for the month; or to a calculated equivalent allowable mass based on the organic HAP and solids contents of the inks, coatings, varnishes, adhesives, primers, solvents, reducers, thinners, and other materials applied for the month.

California Air Resources Board (CARB)

BACT

Source: <u>BACT Determination Tool</u> <u>BACT Guideline Tool</u>

CARB has revised their BACT Clearinghouse and it is now listed as the Technology Clearinghouse to comply with Assembly Bill 617 to establish and maintain a statewide Technology Clearinghouse. The Technology Clearinghouse includes two tools that relate to BACT. The BACT Determination Tool lists BACT determinations (contain limits that a specific piece of equipment (or process) has been required to meet within the district) from the California air districts and out of state agencies.

BACT Determination Printing Press/Box Finishing Non-Heatset Flexographic Page 3 of 18

The BACT Guideline Tool lists guidelines (provide an overview of the limits that may be required when a source type is permitted) from the California air districts.

The BACT Determination Tool listed only one BACT determination from the SCAQMD under Application No. 377979 (6/27/01). This BACT is listed under the SCAQMD Major Source BACT category. This SMAQMD BACT will only apply to minor sources. Therefore, the SCAQMD BACT determination will not be referenced under this BACT determination.

The only BACTs that were listed under the BACT Guideline Tool were from the SJVAPCD, SCAQMD and BAAQMD. The referenced BACTs from these air districts are included in the BACT sections of these air districts under this BACT document. The BACT Guideline Tool also listed the now rescinded BACTs from the SJVAPCD, which are shown down below. These rescinded BACTs are no longer applicable and will not be referenced under this BACT determination.

BACT No.	Active Date	Title	Rescinded
4.7.4	9/22/06	Flexographic Printing – Corrugated Boxes, High End Graphics	8/16/23
4.7.5	2/25/98	Flexographic Printing – Heatset Inks on Low- Porosity Glossy Paper and Plastic Film	5/11/22
4.7.9	10/7/99	Flexographic Printer – High-End Graphics Printing on Clay Coated Paper	5/11/22
4.7.12	4/17/01	Flexographic Printing – High-End Graphics, Heat- Set Inks, on High-Porosity Material	8/16/23
4.7.14	11/9/04	Flexographic UV Printing – High-End Printing of Labels, Tags and Forms	8/16/23
4.7.15	9/22/06	Flexographic Printing – Corrugated Boxes, Low- End Graphics	8/16/23

RULE REQUIREMENTS:

None

Sacramento Metropolitan AQMD (SMAQMD)

BACT

Source: SMAQMD BACTs #'s 149 & 176 (12/22/17)

Flexographic Printing Press/Box Finishing That Are Non-Heatset (#149) Emitting < 8,683 Lbs Uncontrolled VOC Per Year				
voc	Use of materials (as defined in SMAQMD Rule 450 – Graphic Arts) compliant with SMAQMD Rule 450, use of inks with a VOC content (less water and exempt compounds), use of adhesives with a VOC content (less water and exempt compounds) not exceeding 0.044 lb/gal, and no VOC clean-up solvents. (A)			
NOx	No standard			
SOx	No standard			
PM10	No standard			
PM2.5	No standard			
со	No standard			

(A) The high-end and low-end graphics limits were derived from SJVAPCD BACT Guidelines 4.7.4 and 4.7.15, which were rescinded on 8/16/23 and are no longer applicable. Therefore, this BACT will reevaluate the VOC content for inks and not referce the rescined BACTs and associated limits.

Flexographic Printing Press/Box Finishing That Are Non-Heatset (#176) Emitting ≥ 8,683 Lbs Uncontrolled VOC Per Year				
voc	Use of materials (as defined in SMAQMD Rule 450 – Graphic Arts) compliant with SMAQMD Rule 450 – Graphic Arts, use of inks with a VOC content (less water and exempt compounds) of 0.3 lb/gal for low-end graphics, use of VOC content not exceeding 1.1 lb/gal (less water and exempt compounds) for high-end graphics, use of adhesives with a VOC content (less water and exempt compounds) not exceeding 0.044 lb/gal, no VOC clean-up solvents and a VOC control device that has an overall system efficiency (collection and destruction) of at least 98.5% for VOC. (A)			
NOx	No standard			
SOx	No standard			
PM10	No standard			
PM2.5	No standard			
СО	No standard			

(B) The high-end and low-end graphics limits were derived from SJVAPCD BACT Guidelines 4.7.4 and 4.7.15, which were rescinded on 8/16/23 and are no longer applicable. Therefore, this BACT will reevaluate the VOC content for inks and not referce the rescined BACTs and associated limits. The SMAQMD has a BACT trigger level of 0 lb/day.

<u>T-BACT</u>

T-BACT for Flexographic Printing Presses/Box Finishing that are Non-Heatset (#149) Emitting < 8,683 LBS Uncontrolled VOC per Year				
Pollutant	Standard			
Organic HAP/VHAP (T-BACT)	Compliance with the flexographic printing presses/box finishing BACT VOC limits and HAP emission limits of Section 63.825(b) of 40 CFR 63 Subpart KK.			

T-BACT for Flexographic Printing Presses/Box Finishing that are Non-Heatset (#176) Emitting ≥ 8,683 LBS Uncontrolled VOC per Year				
Pollutant	Standard			
Organic HAP/VHAP (T-BACT)	Compliance with the flexographic printing presses/box finishing BACT VOC limits and HAP emission limits of Section 63.825(b) of 40 CFR 63 Subpart KK and a VOC control device that has an overall system efficiency (collection and destruction) of at least 98.5% for VOC.			

RULE REQUIREMENTS:

Rule 450 – Graphic Arts Operations (10/23/2008)

MATERIAL TYPE	VOC CONTENT LIMITS g/l (lb/gal) Less water and exempt compounds
Printing Ink	300 (2.5)
Adhesive	150 (1.25)
Coating	300 (2.5)

VOC Content for Solvent Cleaning Materials:

Material Type	VOC Content Limits g/I (Ib/gal) Including Water and Exempt Compounds	
General (e.g., maintenance, repair, solvent, wipe) Cleaning	25 (0.21)	

Application Equipment Cleaning

Material Type	VOC Content Limits g/l (lb/gal) Including Water and Exempt Compounds	
General (not specifically listed below)	25 (0.21)	
Flexographic Printing	25 (0.21)	
Specialty Flexographic Printing (A)	100 (0.83)	
Ultraviolet/Electron Bean Inks (Except Screen Printing)	100 (0.83)	

(A) Specialty flexographic printing applies to printing on polyethylene, polyester and foil substrates. This BACT applies to box finishing, which does not cover these types of substrates. Therefore, this limit does not apply.

Control Devices Control Efficiency:

Control Devices for flexographic Printing Presses must have an overall system efficiency of 67%.

South Coast AQMD (SCAQMD)

BACT

Source: SCAQMD BACT Guidelines for Non-Major Polluting Facilities, page 103

Printing	Printing (Graphic Arts) - Flexographic	
voc	Inks with \leq 1.5 lbs VOC/gal, less water and exempt compounds (1990); or use of UV/EB or water-based inks/coatings \leq 180 g VOC/L. Compliance with AQMD rules 1130 and 1171 (2-2-2018)	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
со	No standard	

The SCAQMD has a BACT trigger level of 1 lb/day.

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Reg XI, Rule 1130 – Graphic Arts (5/2/2014)

Graphic Art Material	VOC Content Limits g/I (Ib/gal) Less water and exempt compounds
Adhesive	150 (1.25)
Coating	300 (2.5)
Flexographic Fluorescent Ink	300 (2.5)
Flexographic Ink: Non-Porous Substrate	300 (2.5)
Flexographic Ink: Porous Substrate	225 (1.9)

An emission control device must have a control efficiency of at least 95% and the emission collection system must have a collection efficiency of at least 90%.

Reg XI, Rule 1171 – Solvent Cleaning Operations (5/1/2009)

Solvent Cleaning Activity	VOC Limits g/l (lb/gal)
Cleaning of Coatings or Adhesives Application Equipment	25 (0.21)
Cleaning of Ink Application Equipment	
General	25 (0.21)
Flexographic Printing	25 (0.21))
Specialty Flexographic Printing (A)	100 (0.83)
Ultraviolet Ink/Electron Beam Ink Application Equipment (except screen printing)	100 (0.83)

(A) Specialty flexographic printing applies to printing on polyethylene, polyester and foil substrates. This BACT applies to box finishing, which does not cover these types of substrates. Therefore, this limit does not apply.

San Joaquin Valley APCD (SJVAPCD)

BACT

Source: SJVAPCD BACT Guideline 4.9.12 (9/22/06)

Corrugated Box Gluer	
VOC	Use of adhesives with a VOC content of 0.021 lb-VOC/gal (less water and exempt compounds)
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
со	No standard

The SJVAPCD has a BACT trigger level of 2 lb/day.

RULE REQUIREMENTS:

Rule 4607 – Graphic Arts and Paper, Film, Foil and Fabric Coatings (12/18/2008)

VOC content limits for inks, coatings, and adhesives

Material	Grams of VOC per liter (lb/gal), less water and exempt compounds, as applied
Flexographic Ink on Porous Substrates	225 (1.88)
Inks	300 (2.5)
Coatings	300 (2.5)
Adhesives	150 (1.25)

VOC content limits for flexographic specialty ink

Material	Grams of VOC per liter (lb/gal), less water and exempt compounds, as applied
Metallic Ink	460 (3.8)
Matte Finish Ink	535 (4.5)
Metallic Ink and Matte Finish Ink on Flexible Package Printing	383 (3.2)

VOC content limits for solvent cleaning

Type of Solvent Cleaning Operation	Limit Grams of VOC/Liter of Material (Ib/gal)
Product Cleaning During Manufacturing Process; or Surface Preparation for Coating, Ink, or Adhesive Application	25 (0.21)
Repair and Maintenance Cleaning	25 (0.21)
Cleaning of Coating or Adhesive Application Equipment	25 (0.21)
Cleaning of Ink Application Equipment	
General and Flexographic Printing	25 (0.21)
Cleaning of Ink Application Equipment	
Ultraviolet Ink/Electron Beam Ink Application Equipment (except screen printing)	100 (0.83)

Flexographic printing presses venting to a control device must have an overall capture and control efficiency of 75% on a mass basis.

San Diego County APCD (SDAPCD)

Source: NSR Requirements for BACT, page 45

Graphic	Graphic Arts Operations (< 5 tons/year)	
voc	 Use of low VOC fountain solution (< 6% VOC by volume), Capture & recycle blanket and roller tray wash, Use of cleanup solvent which has either less than 200 g VOC/I or vapor pressure of less than 5 mm HG at 20°C, and Use of metering roll cleanup solvent which has either less than 100 g VOC/I or vapor pressure less than 10 mm HG at 20°C, and Use of inks which have a VOC content of less than 300 g/I (2.5 lb/gal) 	
NOx	No standard	
SOx	No standard	
PM10	No standard	
PM2.5	No standard	
со	No standard	

BACT Determination Printing Press/Box Finishing Non-Heatset Flexographic Page 10 of 18

The SDCAPCD has a BACT trigger level of 10 lb/day. The applicant may choose to limit the potential to emit from the equipment to less than 10 lb/day for each pollutant in lieu of meeting the stated BACT requirement.

T-BACT

There are no T-BACT standards published in the clearinghouse for this category.

RULE REQUIREMENTS:

Regulation 4, Rule 67.16 – Graphic Arts Operations (Adopted 11/9/2011 & Effective 05/09/12)

- a) Graphic arts materials, except adhesives, must contain < 300 g VOC/I (2.5 lb/gal)
- b) Adhesives containing not more than 150 grams of VOC per liter (1.25 lb/gal), as applied, less water and less exempt compounds
- c) Fountain solutions containing not more than 5% VOC by volume or fountain solutions containing not more than 8.5% VOC by volume refrigerated to a temperature below 60 degrees F
- d) Cleaning material must have a VOC content less than 100 g/l or the total VOC vapor pressure of the cleaning material is 5mm of Hg at 20°C or less.

Control devices must have a capture and control efficiency of 85% by weight.

Bay Area AQMD (BAAQMD)

Source: BAAQMD BACT Guidelines, Document #83.1, 06/20/95

Flexographic Printing Line	
voc	Water reducible inks with either: < 1.5 lb VOC/gal coating or < 10% by volume VOC: and no VOC clean-up solvents
NOx	No standard
SOx	No standard
PM10	No standard
PM2.5	No standard
со	No standard

The BAAQMD has a BACT trigger level of 10 lb/day.

<u>T-BACT</u>

This guideline also lists these standards as TBACT.

RULE REQUIREMENTS:

Reg 8, Rule 20 – Graphic Arts Printing and Coating Operations (11/19/2008)

Product	Product Limit grams VOC per liter of product as applied, less water and exempt solvent (lbs/gal)	
	Less than:	
Ink	300 (2.5)	
Flexographic Ink Porous Substrate	225 (1.9)	
Flexographic Ink Non-Porous Substrate	300 (2.5)	
Coating	300 (2.5)	
Adhesive	150 (1.25)	
Web Splicing Adhesive	300 (2.5)	

Cleaning Product Limits:

Equipment	VOC g/l (lb/gal) including water
For Press Equipment, except Other Press Parts	
Flexographic Press	25 (0.21)
Specialty Flexographic Press	100 (0.83)
Adhesive Application Equipment	25 (0.21)
Ultraviolet Ink Removal, Any Press Type	100 (0.83)
Other Press Parts	25 (0.21)

Emission control systems must have an overall efficiency of 75% on a mass basis.

Summary of Achieved in Practice Control Technologies

	SUMMARY OF ACHIEVED IN PRACTICE CONTROL TECHNOLOGIES
VOC	 Use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water-based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water-based inks/coatings. – [BAAQMD, SCAQMD, SJVAPCD] Less of water-based inks/coatings. – [BAAQMD, SCAQMD, SJVAPCD]
	2. Use of materials compliant with SCAQMD Rule 1130 and 1171, BAAQMD Regulation 8 Rule 20, SJVAPCD Rule 4607 or SMAQMD Rule 450. – [SCAQMD, SMAQMD, BAAQMD, SJVAPCD]
	3. Use of materials compliant with SDCAPCD Rule 67.16. – [SDCAPCD]
NOx	No standard – [SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]
SOx	No standard – [SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]
PM10	No standard – [SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]
PM2.5	No standard – [SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]
СО	No standard – [SMAQMD, SCAQMD, SDCAPCD, BAAQMD, SJVAPCD]

Emission limits for inks, coatings, adhesives and solvent cleaning are consistent across SCAQMD Rule 1130 and 1171, SMAQMD Rule 450, BAAQMD Regulation 8 Rule 20 and SJVAPCD Rule 4607. The difference is the SJVAPCD Rule 4607 includes a category for flexographic specialty inks, with VOC content limits that are higher than for other flexographic inks, while the SMAQMD Rule 450 does not. Therefore, SMAQMD Rule 450 is more stringent for these inks. Also, the SCAQMD, BAAQMD and SJVAPCD rules separate the ink into porous (225 g/l) and non-porous (300 g/l) substrates, which the SMAQMD does not. For this application, the SCAQMD, BAAQMD and SJVAPCD rules would be more stringent for porous substrates. But this will not affect the selection of BACT for the ink, because the BACT limit will be set by the BAAQMD and SCAQMD BACTs. The BAAQMD BACT #83.1 has not been updated since 1995 and only shows the use of water-based inks with less than 1.5 lb VOC/gal and no VOC clean-up solvents. It has been shown that UV/EB inks are also low VOC emitting (https://www3.epa.gov/ttn/catc/cica/files/fuv-eb.pdf) and have been included on the SCAQMD BACT as an option in addition to the water-based inks and coatings. SMAQMD Rule 450 and SCAQMD Rule 1171 allow a higher VOC content for solvent cleaning for UV/EB inks, which will be addressed by compliance with Rule 450. The cleaning of the coatings will be addressed by the Flexographic Printing limit of Rule 450 (0.21 lb VOC/gal, including water and exempt compounds), since there is no specific limit for UV/EB coatings. Therefore, this BACT will combine the BACT requirements from the BAAQMD and SCAQMD.

The following control technologies have been identified as the most stringent, achieved in practice control technologies:

BEST CONTROL TECHNOLOGIES ACHIEVED				
Pollutant	Standard	Source		
VOC	Use of materials compliant with SMAQMD Rule 450 – Graphic Arts, use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water-based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water-based inks/coatings.	BAAQMD, SCAQMD, SJVAPCD		
NOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
SOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
PM10	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
PM2.5	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
со	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		

B: TECHNOLOGICALLY FEASIBLE AND COST EFFECTIVE (Rule 202, §205.1.b.)

Technologically Feasible Alternatives:

Any alternative basic equipment, fuel, process, emission control device or technique, singly or in combination, determined to be technologically feasible by the Air Pollution Control Officer.

The table below shows the technologically feasible alternatives identified as capable of reducing emissions beyond the levels determined to be "Achieved in Practice" as per Rule 202, §205.1.a.

Pollutant	Technologically Feasible Alternatives	
VOC	 Thermal oxidizer Carbon adsorber 	
NOx	None	
SOx	None	
PM10	None	

Pollutant	ollutant Technologically Feasible Alternatives	
PM2.5	None	
со	None	

VOCs: As shown above, thermal oxidation and carbon adsorption are technologically feasible. According to the BAAQMD BACT Guideline 83.1, an overall system efficiency (capture and control efficiencies combined) of 98.5% for VOCs is technologically feasible for these types of operations.

Cost Effectiveness Determination:

After identifying the technologically feasible control options, a cost analysis is performed to take into consideration economic impacts for all technologically feasible controls identified.

Maximum Cost per Ton of Air Pollutants Controlled

1. A control technology is considered to be cost-effective if the cost of controlling one ton of that air pollutant is less than the limits specified below (except coating operations):

Pollutant	<u>Maximum Cost (\$/ton)</u>
VOC	25,300
NO _X	35,300
PM10	11,400
SO _X	18,300
CO	300

Cost Effectiveness Analysis Summary

The cost analysis was processed in accordance with the EPA OAQPS Air Pollution Control Cost Manual (Sixth Edition). The sales tax rate was based on the District's standard rate of 8.5% as approved on 10/17/16. The electricity (11.24 cents/kWh) and natural gas (6.41 dollars/1,000 cubic feet) rates were based on an industrial application as approved by the District on 10/17/16. The life of the equipment was based on the EPA cost manual recommendation. The interest rate was based on the previous 6-month average interest rate on United States Treasury Securities and addition of two percentage points and rounding up the next higher integer rate. The labor (Occupation Code 51-5112: Printing press operators) and maintenance (Occupation Code 49-9099: Installation, maintenance, and repair workers, all others) rates were based on data from the Bureau of Labor Statistics for California.

A. Carbon Adsorber:

As shown in Attachment B, the cost effectiveness for the add on carbon adsorber system to control VOC was calculated to be **\$25,300.06/ton**. The following basic parameters were used in the analysis.

Equipment Life = 15 years

Total Capital Investment = \$426,981

BACT Determination Printing Press/Box Finishing Non-Heatset Flexographic Page 15 of 18

> Direct Annual Cost = \$11,548 per year Indirect Annual Cost = \$69,918 per year Recovery Credit = - \$2,071 per year Total Annual Cost = \$79,395 per year VOC Removed = 3 tons per year

Cost of VOC Removal = \$25,300.06 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a carbon absorber is shown in Attachment B. **Uncontrolled** VOC emissions of **6,371 lb/year** or greater is the cost-effective threshold for control equipment using carbon absorption control technology.

B. Thermal Oxidizer:

Equipment Life = 20 years Direct Cost = \$1,750,236

Direct Annual Cost = \$73,874 per year

Indirect Annual Cost = \$241,345 per year

Total Annual Cost = \$315,219 per year

VOC Removed = 8.9 tons per year

Cost of VOC Removal = \$35,300 per ton reduced

A detailed calculation of the cost effectiveness for VOC removal with a thermal oxidizer is shown in Attachment B. **Uncontrolled** VOC emissions of **17,800 lb/year** or greater is the cost-effective threshold for control equipment using thermal oxidation control technology.

<u>Conclusion</u>: In this analysis, different emission operating levels are presented with the corresponding total cost per ton of VOC controlled using either a carbon adsorption control or a thermal oxidizer. Uncontrolled VOC emission level of 6,371 lb per year or greater must be reached in order for the carbon adsorption control option to be cost effective. Uncontrolled VOC emission level of 17,800 lb per year or greater must be reached in order for a thermal oxidizer to be cost effective. The emissions level for the cost effectiveness of controls is based on the District cost effective limit for VOC of \$25,300 per ton controlled.

With EPA's cost data, the highest allowable uncontrolled emission rate to not require add-on control devices will be updated to 6,371 lb/year based on the cost of carbon adsorption.

C: SELECTION OF BACT

BACT FOR FLEXOGRAPHIC PRINTING PRESS/BOX FINISHING THAT ARE NON-HEATSET (#365) EMITTING < 6,371 LBS UNCONTROLLED VOC PER YEAR				
Pollutant	Standard	Source		
VOC	Use of materials compliant with SMAQMD Rule 450 – Graphic Arts, use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water-based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water-based inks/coatings.	SMAQMD, SCAQMD, BAAQMD		
NOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
SOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
PM10	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
PM2.5	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		
со	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD		

BACT FOR FLEXOGRAPHIC PRINTING PRESS/BOX FINISHING THAT ARE NON-HEATSET (#366)			
	EMITTING ≥ 6,371 LBS UNCONTROL	LED VOC PER YEAR	
Pollutant	Standard	Source	
VOC	Use of materials compliant with SMAQMD Rule 450 – Graphic Arts, use of inks with < 1.5 lbs VOC/gal, less water and exempt compounds; or use of UV/EB or water- based inks/coatings < 180 g VOC/L (1.5 lbs VOC/gal), less water and exempt compounds, and use of adhesives with a VOC content not exceeding 0.021 lb/gal, less water and exempt compounds. No VOC clean-up solvents with use of water- based inks/coatings. A VOC control device that has an overall system efficiency (collection and destruction) of at least 98.5% for VOC.	SMAQMD, SCAQMD, BAAQMD	
NOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	
SOx	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	
PM10	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	
PM2.5	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	
со	No standard	SMAQMD, SCAQMD, SJVAPCD, SDCAPCD, BAAQMD	

BACT Determination Printing Press/Box Finishing Non-Heatset Flexographic Page 18 of 18

D: SELECTION OF T-BACT

Toxics are in the form of VOCs and may also be exempt compounds. T-BACT for flexographic printing presses/box finishing operations was determined to be the following:

T-BACT FOR FLEXOGRAPHIC PRINTING PRESSES/BOX FINISHING THAT ARE NON-HEATSET (#365) EMITTING < 6,371 LBS UNCONTROLLED VOC PER YEAR			
Pollutant	Standard	Source	
Organic HAP/VHAP (T-BACT)	1. Compliance with the flexographic printing presses/box finishing BACT VOC limits and HAP emission limits of Section 63.825(b) of 40 CFR 63 Subpart KK.	NESHAP 40 CFR 63 Subpart KK	

T-BACT FOR FLEXOGRAPHIC PRINTING PRESSES/BOX FINISHING THAT ARE NON-HEATSET (#366) EMITTING ≥ 6,371 LBS UNCONTROLLED VOC PER YEAR			
Pollutant	Standard	Source	
Organic HAP/VHAP (T-BACT)	1. Compliance with the flexographic printing presses/box finishing BACT VOC limits and HAP emission limits of Section 63.825(b) of 40 CFR 63 Subpart KK and a VOC control device that has an overall system efficiency (collection and destruction) of at least 98.5% for VOC.	NESHAP 40 CFR 63 Subpart KK BAAQMD BACT Guideline 83.1	

Approved by: Brian 7 Krebs Date: 07-23-2024

Attachment A Review of BACT Determination

ACTIVE

SMAQMD BACT CLEARINGHOUSE

CATEGORY	<i>(</i> :	FLEXOGRAPH	IC PRESS NON-HEATSET	-
BACT Size: Minor Source BACT PRINTING PR				PRINTING PRE
BACT Determination Number: 149		BACT Determination Date:	12/22/201	
		Equipment	Information	
Permit Nur	mber: 24803			
Equipment	Description:	PRINTING PRESS		
Jnit Size/R	Rating/Capacity:	< 8,683 LBS/YEAR UN	CONTROLLED VOC	
Equipment	t Location:	OFFICE OF STATE PU	IBLISHING	
		4225 PELL DR		
		SACRAMENTO, CA		
		BACT Determina	tion Information	
ROCs	Standard:	See Comments		
	Technology			
	Description:			
	Basis:	Achieved in Practice		
NOx	Standard:	No Standard		
	Technology			
	Description:			
	Basis:	No Standard		
SOx	Standard:			
	Description:			
	Basis:			
DM10	Standard:	No Standard		
	Technology			
	Description:			
	Basis:			
PM2.5	Standard:	No Standard		
	Technology			
	Description:			
	Basis:	No Standard		
со	Standard.			
	Description:			
	Basis:			
	Standard:	No Standard		
LLAD	Technology			
	Description:			
	Basis:			
Comments	BACT: Use of mate with a VOC content not exceeding 1.1 I (less water and exc VOC BACT and HA	erial (as defined in SMAQMD Rule t (less water and exempt compoun b/gal (less water and exempt com empt compounds) not exceeding 0 AP emission limits of Section 63.8	450 - Graphic Arts) compliant with SMAQMD ds) of 0.3 lb/gal for low end graphics, use of in pounds) for high-end graphics, use of adhesive .044 lb/gal and no VOC clean-up solvents. TB/ 25(b) of 40 CFR 63 Subpart kk.	Rule 450, use of inks ik with a VOC content is with a VOC content ACT: Compliance with
District C	Contact: Felix	Trujillo Phone No.: (916	6)874-7357 email: jquok@airqua	lity.org
intod: 1/2//2	018			

ACTIVE

SMAQMD BACT CLEARINGHOUSE

BACT Size:				PRINTING PRES
DAOT D.4		470	DAGT Determinedian Deter	10/00/0017
BACIDete	ermination Numb	er: 176	BACT Determination Date:	12/22/2017
		Equipment	Information	
Permit Nu	mber: 24803			
Equipmen	t Description:	PRINTING PRESS		
Unit Size/F	Rating/Capacity:	≥ 8,683 LBS/YEAR UN	CONTROLLED VOC	
Equipmen	t Location:	PACKAGE ONE		
		4225 PELL DR		
		SACRAMENTO, CA		
		BACT Determina	tion Information	
ROCs	Standard:	See comments		
	Technology			
	Description:			
	Basis:	Achieved in Practice		
NOx	Standard:	No Standard		
	Technology			
	Description:			
	Basis:	No Standard		
SOx	Standard:	No Standard		
	Technology			
	Basis			
DM40	Standard:	No Standard		
FINITO	Technology			
	Description:			
	Basis:			
PM2.5	Standard:	No Standard		
	Technology			
	Description:			
	Basis: Standard:	No Standard		
co	Stanuaru. Technology			
	Description:			
	Basis:			
LEAD	Standard:	No Standard		
LLAD	Technology			
	Description:			
	Basis:			
Comments	BACT: Use of mate with a VOC content not exceeding 1.1 II (less water and exe has an overall syste	rial (as defined in SMAQMD Rule (less water and exempt compour)/gal (less water and exempt com mpt compounds) not exceeding 0 em efficiency (collection and destr	450 - Graphic Arts) compliant with SMAQMD hds) of 0.3 lb/gal for low end graphics, use of pounds) for high-end graphics, use of adhesiv .044 lb/gal, no VOC clean-up solvents and a uction) of at least 98.5% for VOC. TBACT: Co	Rule 450, use of inks nk with a VOC content res with a VOC content VOC control device that ompliance with VOC
District (Contact: Felix	Truiillo Phone No.: (916	6) 874 - 7357 email: ftruiillo@air	auality.org

San Joaquin Valley Unified Air Pollution Control District

Best Available Control Technology (BACT) Guideline 4.9.12*

Last Update: 8/29/2018

Corrugated Box Gluer

Pollutant	Achieved in Practice or contained in the SIP	Technologically Feasible	Alternate Basic Equipment
VOC	Use of adhesives with a VOC content of 0.021 lb- VOC/oal (less water and	1. VOC Capture and Thermal/Catalytic Oxidation	
	exempt compounds)	2. VOC Capture and Carbon Adsorption	

BACT is the most stringent control technique for the emissions unit and class of source. Control techniques that are not achieved in practice or contained in a State Implementation Plan must be cost effective as well as feasible. Economic analysis to demonstrate cost effectiveness is required for all determinations that are not achieved in practice or contained in an EPA approved State Implementation Plan.

*This is a Summary Page for this Class of Source

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guidelines for Non-Major Polluting Facilities*

10-20-2000 Rev. 0 12-5-2003 Rev. 1 7-14-2006 Rev. 2 2-2-2018 Rev. 3 2-1-2019 Rev. 4

9-2-2022 Rev. 5

	Criteria Pollutants						
Subcategory	VOC	NOx	SOx	CO	PM10	Inorganic	
Flexographic	Inks with \leq 1.5 Lbs VOC/Gal, Less Water and Less Exempt Compounds (1990); or use of UV/EB or water-based inks/coatings \leq 180 g VOC/L. Compliance with Rules 1130 and 1171 (2-2-2018)						
Alternatively	For add-on control required by Rule 1130(c)(5) or other South Coast AQMD requirement: EPA M. 204 Permanent Total Enclosure (100% collection) vented to thermal oxidizer with 95% overall control efficiency; Combustion Chamber: Temp \geq 1500°F ¹ , Retention Time > 0.3 seconds (2-2-2018)	Compliance with BACT requirements for Thermal Oxidizer		Compliance with BACT requirements for Thermal Oxidizer			
Letterpress	Compliance with Rules 1130 and 1171 (12-5-2003)						

* Means those facilities that are not major polluting facilities as defined by Rule 1302 - Definitions

BACT Guidelines - Part D

103

Printing (Graphic Arts)

BAY AREA AIR QUALITY MANAGEMENT DISTRICT Best Available Control Technology (BACT) Guideline

Source Category

Source:	Elmonumbia Driving Line	Revision:	2
	Flexographic Frinting Line	Document #:	83.1
Class:	All	Date:	06/20/95

Determination

POLLUTANT	BACT 1. Technologically Feasible/ Cost Effective 2. Achieved in Practice	TYPICAL TECHNOLOGY
POC	 Water reducible inks w/ <1 lb VOC/gal of coating and no VOC clean-up solvents. If cost- effective, capture and vent VOC to afterburner or carbon adsorption sytem w/ ≥ 98.5% destruction/recovery device efficiency, or VOC outlet ≤10 ppmv^{a,b,T} Water reducible inks w/ either: <1.5 lb VOC/gal coating or <10% by volume VOC; and no VOC clean-up solvnets^{a,T} 	 Low VOC Coatings and no VOC clean-up solvents; or BAAQMD approved Collection System and Abatement Device^{a,b,T} Low VOC Coatings and no VOC clean-up solvents^{a,T}
NOx	1. n/a 2. n/a	1. n/a 2. n/a
SO ₂	1. n/a 2. n/a	1. n/a 2. n/a
со	1. n/a 2. n/a	1. n/a 2. n/a
PM10	1. n/a 2. n/a	1. n/a 2. n/a
NPOC	 Same as for POC above^{a,b,T} Same as for POC above^{a,b,T} 	 Low or no NPOC Coatings and Solvents: or BAAQMD Approved Abatement System^{a,b,T} Low NPOC Coatings and Solvents^{a,T}

References

a. BAAQMD

b. For abatement devices, the following are acceptable: $\leq 10 \text{ ppmv}$ at outlet; or $\geq 98.5\%$ destruction/recovery efficiency if inlet VOC $\geq 2000 \text{ ppmv}$: or $\geq 97\%$ efficiency if inlet VOC $\geq 2000 \text{ to } < 2000 \text{ ppmv}$: or $\geq 90\%$ efficiency if inlet VOC < 200 ppmv. T. TBACT

GRAPHIC ARTS OPERATDONS (< 5 tons/year) Fee Schedule 27 N

The BACT Control Options which have been determined to be technologically feasible (T/F - demonstrated but not necessarily proven in field application) or have achieved the BACT emission rate limits in practice (A/P - demonstrated in use for the specific equipment category) are listed below. The BACT Control Options are listed in descending order of control stringency. If the top-listed T/F control option is proposed, no further analysis is required. If the first T/F control option is not chosen, then the applicant must review and determine the cost-effectiveness of each T/F control option in the order listed. The first control option determined to be cost-effective must be installed to meet the BACT requirement. A control option is considered cost-effectiveness value for the same pollutant shown in Table 2-4. If none of the T/F control options are determined to be cost-effective, the applicant must propose the A/P control option, propose an alternative technology that meets the BACT emission rate limit or perform a full Top-down BACT Analysis as described in Section 4. The applicant is responsible for ensuring that the installed equipment meets the specified BACT Emission Rate Limit. (See Section 2 for further guidance.)

	VOC	NOx	SOx	PM
BACT Control Option	 Use of low VOC fountain solution (< 5% VOC by volume), Capture & recycle blanket and roller tray wash, Use of cleanup solvent which has either less than 100 grams VOC per liter or vapor pressure of less than 5 mm HG at 20°C, Use of metering roll cleanup solvent which has either less than 100 grams VOC per liter or vapor pressure of less than 5 mm HG at 20°C, Use of metering roll cleanup solvent which has either less than 100 grams VOC per liter or vapor pressure of less than 5 mm HG at 20°C, and Use of inks which have a VOC content of less than 225 grams per liter (1.9 lb/gal). 	(N/A)	(N/A)	(N/A)
	(T/F) BACT emission rate limit not determined.			
BACT Control Option	 Use of low VOC fountain solution (< 6% VOC by volume), Capture & recycle blanket and roller tray wash, Use of cleanup solvent which has either less than 200 grams VOC per liter or vapor pressure of less than 5 mm HG at 20°C, and Use of metering roll cleanup solvent which has either less than 100 grams VOC per liter or vapor pressure of less than 10 mm HG at 20°C, and Use of inks which have a VOC content of less than 300 grams per liter (2.5 lb/gal). 	(N/A)	(N/A)	(N/A)

The applicant may choose to limit the Potential to Emit (PTE) from the equipment to less than 10 pounds per day for each pollutant in lieu of meeting the stated BACT requirement.

Attachment B

Cost Effectiveness Analysis for Carbon Adsorption

Data Inputs						
Select the type of carbon adsorber system:	Fixed-Bed Carbon Adsorber with Steam Regeneration		-			
For fixed-bed carbon adsorbers, provide the following information:						
Select the type of operation:	Continuous Operation	-				
Select the type of material used to fabricate the carbon adsorber vessels:	Stainless Steel, 304	•				
Select the orientation for the adsorber vessels:	Horizontal	•				
Enter the design data for the proposed Fixed-Bed Carbon Adsorber with Steam Regeneration						

Number of operating hours per year (0.)	2,080 hours/year	
Waste Gas Flow Rate (Q)	10,000 acfm*	*acfm is actual cubic feet/min
VOC Emission Rate (m _{voc})	3.063 lbs/hour	
Required VOC removal efficiency (E)	98.5 percent	
Superficial Bed Velocity (v _b)	75.00 ft/min	
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15 Years*	* 15 years is a default equipment life. User should enter actual value, if known.
Estimated Carbon life (n)	5 Years	
Total Number of carbon beds (N _{tots})	3 Beds*	* 3 beds is the default. User should enter actual number of beds, if known.
Number of carbon beds adsorbing VOC when system is operating (N_A)	Z Beds*	* 2 beds is the default. User should enter actual number of beds, if known.
Total time for adsorption (Θ_A)	12 hours*	* 12 hours is a default value. User should enter actual value, if known.
Total time for desorption (Θ _D)	5 hours*	* 5 hours is a default value. User should enter actual value, if known.
Estimated Carbon Replacement Rate (CRR)	379 lbs/hour*	* 379 lbs./hour is a default value. User should enter actual value, if known.

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	Toluene	
Partial Pressure of Toluene in waste gas stream	0.0104	psia
Parameter "k" for Toluene	0.551	Note:
Parameter "m" for Toluene	0.110	Typical values of "k" and "m" for some common VOCs are shown in Table A.

Enter the cost data for the carbon adsorber:

Desired dollar-year	2024			
CEPCI* for 2024	800.3	CEPCI value for 2024	390.6	1999
Annual Interest Rate (i)	7	percent (Current bank prime rate)		

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Electricity (P _{idec})	\$0.1124	per kWh	
Steam (P ₂)	\$5.00	per 1,000 lbs*	* \$5.00/1,000 lbs is a default value. User should enter actual value, if known.
Cooling Water (P _{cw})	\$3.55	per 1,000 gallons of water*	* \$3.55/1,000 gallons is a default value. User should enter actual value, if known.
Operator Labor Rate	\$22.76	perhour	
Maintenance Labor Rate	\$26.18	perhour	
Carbon Cost (CC)	\$4.20	perib	* \$4,20/lb is a default value based on 2018 market price. User should enter actual value, if known.
Re-Sale Value of Recovered VOC (Pvm)	\$0.33	perib*	* 50.33/lb is a default value for recovered toluene based on 2018 data. User should enter actual value of recovered
Disposal/Treatment Cost for Recovered VOC (D _{vin})	\$0.00	per lb*	* \$0/Ib is a default value for disposal and/or treatment of recovered VOC/HAP. User should enter actual value, if known.
If known, enter any additional costs for site preparation and building construction	/modification:	A DATE OF A DESCRIPTION	
Site Preparation (SP) =	\$0	* Default value. User should enter actu	ial value, if known.
Buildings (Bldg) =	\$0	* Default value. User should enter actu	al value, if known.
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack)			
(EC _{aur}) =	\$32,000	* Default value. User should enter actu	ial value, if known.
Contingency Factor (CF)	10.0	percent*	* 10 percent is a default value. The contingency factor should be between 5 and 15 percent.

Data Sources for Default Values Used in Calculations:

Design Parameters

The following design parameters for the carbon adsorber were calculated based on	the values entered on the <i>Data Inputs</i> tab. These values were used to prepare the costs sho	wn on the Cost Estimate tab.	
Type of Carbon Adsorber:	Fixed-Bed Carbon Adsorber with Steam Regeneration		
Name of VOC Controlled:	Toluene		
Parameter	Equation	Calculated Value	Units
Quantity of Toluene Recovered:			
Quantity of Toluene Recovered (Wvoc) =	$W_{vgc} = m_{vgc} \times \Theta_{g} \times E =$	3.13	8 tons/year
Time required for Desorption (Θ_0) =			5 hours
Time for Adsorption $(\Theta_A) =$		1	2 hours
Time Available for Desorption =	$\Theta_A (N_O/N_A) =$		6 hours
Adsorber Parameters:			
Equilibrium Capacity at the Inlet (Walmass) =	$k \times P^m =$	0.33	3 lb. VOC/lb. Carbon
Working Capacity (w,) =	$0.5 \times w_{e max} =$	0.16	7 lb. VOC/lb. Carbon
Adjustment Factor for Adorber Vessel Material (Fm) =		1.	0 (* Stainless Steel, 304)
Number of Bed Desorbing (N _D) =	N _{total} - N _A =		1 Bed
Number of Bed Adsorbing (N _A) =			2 Bed
Volumetric Flow Rate for each Vessel (0") =	Q/N. =	5.000	acfm/Bed
Carbon Bed Thickness (t _n) =	$(M_c/p_b)/(Q'/v_b)$, where the density of carbon (pb) = 30 lb/sq.ft	0.06	5 ft.
Pressure Drop (ΔP.) =	$t_h \propto (0.03679 v_h + 1.107 \times 10^4 v_h^2) + 1 =$	1.1	9 inches
Cooling Fan Operating Time (0) =	$0.4 \times \Theta_0 \times (N_a \times \Theta_c)/\Theta_a =$	69	3 hours
Estimated Carbon Required:			
Estimated Carbon Consumption (M.) for a continuously operated system =	$(m_{ecc}/w_c) \times \Theta_A (1 + N_D/N_A) =$	333	1 lbs.
Carbon Required for each Vessel (M,') =	$M_{\rm c} / (N_{\rm A} + N_{\rm D}) =$	110	0 lbs./Bed
Estimated Adsorber Vessel Dimensions and Surface Area:			
Vessel Orientation =	10 117 - M Low MOI	Horizontal	1.4
vessel blameter (b) =	$(0.12) \times m_c \times v_0 y Q =$	0.2	1 R.
Vessel Length (L) = Surface Area of Advarber Vescel (S) -	(7.87/MC) X (U/M ₀) = = = x V (U/M ₀) =	317.2	8 ft.
Surrace Area of Ausonoel Vessel (3) -	KADALUUCI-	20	a star
Electricity Consumption:			
Electricity Consumed by the system fan (Q _{t1}) =	$(0.746 \text{ kW/hp}) \times 2.5 \times 10^{-1} \times \Omega \times \Delta P_s \times \Theta_s =$	4,60,	2 kWh/year
Electricity Consumed by the cooling fan (Q _d) =	$(0.746 \text{kW/hp}) \times 2.5 \times 10^{-4} \times \Omega_{cf} \times \Delta P_c \times \Theta_{cf} =$	460	0 kWh/year
Electricity Consumed by the Cooling Water Fan (Q _{cut}) =	$(0.746 \text{ kW/hp}) \times [2.52 \times 10^{\circ} \times 100/\eta] \times [\Theta_{exp}/(0.6 \times \Theta_D \times N_A \times \Theta_D/\Theta_A) \times 60 \text{ mins/hour}] =$	13.	2 kWh/year
Total Estimated Electricity Consumption (Q _{Elect}) =	Qsf + Qcf + Qcsf =	5,194	4 kWh/year
Steam Consumption:			
Total Steam Consumption (Q _{iteam}) =	$= 3.5 \times M_{vac} \times \Theta_c =$	22,301	1 lbs./year
Cooling Water Consumption:			
Total Cooling Water Consumption (Q _{ew}) =	= 3.43 x C ₉ /P ₅ =	76,494	4 gallons/year
Capital Recovery Factor:	6×(1+0 [°])/((1+0 [°] -1)-	0.100	
Capital Recovery Factor for adsorber vessels and auxiliary equipment (CERabsorber)=	Where n = Equipment Life and i = Interest Rate	0.103	ro.
Control Bernary Francisco Control Cont	$[i \times (1 + i)^n] / [(1 + i)^n - 1] =$	0.243	9
capital Recovery Factor for carbon (CRF _{Carbon}) =	Where n = Carbon Life and i = Interest Rate		

	Cost Estimate		
	Capital Costs		
stimated capital costs for a Fixed-Bed Carbon Adsorber with Steam VOC Controlled/Recovere	i Regeneration with the following characteristics: 2d = Toluene		
Adsorber Vessel Orientatio	on = Horizontal		
Operating Schedun	e = continuous operation		
fotal Capital Investment (TCI) (in 2024 dollars)	Equation	Cost	
iosts for Each Carbon Adsorber Vessel (C _v) =	271 x F _m x S ⁰⁷⁷⁸ =	\$35,499	
fotal Cost for All Carbon Adsorber Vessels and Carbon(EC Adsorb) =	$5.82 \times Q^{-0.133} \times [C_{e} + (N_{A} + N_{D}) \times C_{v}] =$	\$184,453	
Auxiliary Equipment (EC _{put}) =	(Based on design costs or estimated using methods provided in Section 2)	\$32,000	
otal Purchased Equipment Costs for Carbon Adsorber (A) =	= EC _{Adsorb} + EC _{aut} =	\$216,453	
	0.101	Included in A	
nstrumentation = ales taxes =	0.10 × A = 0.085 × A =	S18 398	
reight =	0.05 × A =	\$10,823	
	Total Purchased Equipment Costs (B) =	\$245,674	
irect Installation Costs (in 2024 dollars)			
arameter	Equation	Cost	
oundations and Supports = landling and Erection =	0.08 × B = 0.14 × B =	\$19,654	
lectrical =	0.04 × B =	\$9,827	
iping =	0.02 × B =	\$4,913	
isulation =	0.01 × B = 0.01 × B =	\$2,457 \$2,457	
ite Preparation (SP) =	0.01 * 0 -	50	
uildings (Bldg) =		\$0	
	Total Direct Costs (DC) = B + (0.3 × B) + SP + Bidg =	\$319,376	
otal Indirect Installation Costs (in 2024 dollars)	Equation	Cort	
ingineering =	0.10 × B =	\$24,567	
Construction and field expenses =	0.05 × B =	\$12,284	
iontractor fees =	0.10 × B =	\$24,567	
rart-up = erformance test =	$0.02 \times B =$ $0.01 \times B =$	\$4,913 \$2,457	
retingency Cost (C) =	Total Indirect Costs (IC) =	\$68,789 \$38,816	
annigency cost (c) -	cificitel.	\$30,010	
iotal Capital Investment (TCI) =	DC + IC + C = (1.28 × B) + SP + Bldg. + C =	\$426,981	in 2024 dollars
	Annual Costs		
irect Annual Costs	Front in	6	
arameter nonual Electricity Cost =	Orus × Pate =	5584	
nnual Steam Cost (C .) =	$3.50 \times m_{voc} \times \Theta_s \times P_s =$	\$112	
Annual Cooling Water Cost (C _{ts}) =	3.43 x C ₅ /P ₅ x P _{wc} =	\$272	
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$2,959	
Azintenance Costs-	Supervisor = 15% of Operator Labor = 0.5 hours/shift x Labor Rate x (Operating Hours/8 hours/shift)	5444 53.403	
	Materials = 100% of maintenance labor	\$3,403	
Carbon Replacement Costs:	Labor = CRF _{catbon} × (Labor Rate × M _c)/CRR =	\$6	
	Carbon = CRF _{earbon} x CC x M _c x 1.08 =	\$366	
rect Annual Costs (DAC) =		\$11,548	in 2024 dollars
direct Annual Costs			
arameter	Equation	Cost	
	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance		
Iverhead Interistrative Charges	materials = 2% of T/1	56,126	
roperty Taxes	= 1% of TCI	\$4,270	
surance	= 1% of TCI	\$4,270	
apital Recovery	$= CRF_{Adsorber} \times (I CI - [(1.08 \times CC \times M_d) + (LR \times M_d/CRR)] =$	\$46,713	
direct Annual Costs (IAC) =		\$69,918	in 2024 dollars
1 0 1			
ecovered solvent credit/Disposal Costs			
isposal Cost			
arameter OC Disposal/Treatment Costs (<i>Disposal</i> 1	Equation = $m_{wx} \times \Theta$, $\times D_{wx} \times E$ =	Cost	
a to all one (BC)		20	
IOC Recovery Credit			
arameter	Equation	Cost	
nnual Recovery Credit for Condensate (RC)	$= m_{voc} \times \Theta_s x P_{voc} x E =$	\$2,071	
atal Annual Cast /TAC) -	DAC+LAC+C+Dimoral BC =	670.205	is 2024 dellars
otal Annual Cost (IAC) -	one - me - e + orsposar (ne -	\$79,395	m 2024 domas
	Cost Effectiveness		
set Effortivonors			
arameter	Equation	Cost	
otal Annual Cost =	TAC =	\$79,395	per year in 2024 dollars
Annual Quantity of VOC Removed/Recovered =	$W_{\rm vir} = m_{\rm vir} \times \Theta_{\rm s} \times E =$	3	tons/year
.ost criectiveness =	i oral Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$25,300.06	per ton or pollutants removed/recovered in 2024 dolla

Attachment C Cost Effectiveness Analysis for Thermal Oxidizers

Data Inputs

Select the type of oxidizer Regressible Thermal Oxidizer

Composition of Inlet Gas Stream						
Pollutant Name	Concentration (ppmv)	Lower Explosive Limit (LEL) (ppmv)*	Heat of Combustion (Btu/scf)	Molecular Weight		
Toluene	2,001	11,000	4,274	92.14		

Note: The lower explosion limit (LEL), heat of combustion and molecular weight for some commonly used VOC/HAP are provided in the table below. In addition, the heat of combustion to be entered in column D is a lower heating value (LHV), not a higher heating value (HHV).

Enter the design data for the proposed oxidizer:

Number of operating hours/year	2,080 hours/year	Percent Energy Recovery (HR) = 10 percent.
Inlet volumetric flow rate(Q _{vi}) at 77°F and 1 atm.	20,000 scfm*	* 20,000 scfm is a default volumetric flow rate. User should enter actual value, if known.
Pressure drop (ΔP)	19 inches of water	* 19 inches of water is a default pressure drop for thermal oxidizers. User should enter actual value, if known.
Motor/Fan Efficiency (ɛ)	60 percent*	* 60% is a default fan efficiency. User should enter actual value, if known.
Inlet Waste Gas Temperature (T _{wi})	77 °F	
Operating Temperature (T _{ri})	1,900 °F	* Note: Default value for This 2000°F for thermal regenerative oxidizers. Use actual value if known. Thi for regenerative oxidizers typically between 1800 and 2000°F.
Destruction and Removal Efficiency (DRE)	98.5 percent	
Estimated Equipment Life	20 Years*	* 20 years is the typical equipment life. User should enter actual value, if known.
Heat Loss (ŋ)	1 percent*	* 1 percent is a default value for the heat loss. User should enter actual value, if known. Heat loss is typically between 0.2 and 1.5%.

Enter the cost data:

Data Sources for Default Values Used in Calculations:

the second se			_
Desired dollar-year	2024		
CEPCI* for 2024	800.3 Enter the CEPCI value for	2024 536.4 2016 CEPCI	*Enter dollar year first.
Annual Interest Rate (i)	7.00 %		
Electricity (Cost _{elect})	0.1124 \$/kWh		
Natural Gas Fuel Cost (Cost _{fuel})	0.00975 \$/scf		
Operator Labor Rate	\$22.76 per hour		
Maintenance Labor rate	\$26.18 per hour		
Contingency Factor (CF)	10.0 Percent		* 10 percent of the total capital investment F45is a default value for construction contingencies. Liser may enter values between 5 and 15 percent.

 CEPCI is the Chemical Engineering Plant Cost Escalation/De escalation Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purposes of cost escalation or deescalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Design Parameters

The following design parameters for the oxidizer were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Composition of Inlet Gas Stream			
Pollutant Name	Concentration in Waste Stream (ppmv) From Data Inputs Tab	Adjusted Concentration with Dilution Air (ppmv)	
Toluene	2,001	NA	
0	0	NA	
Total	2,001	0	

Constants used in calculations:

Temperature of auxiliary fuel $(T_{st}) =$	Reference Temperature (T _{ref}) =	77.0 °F
Density of auxiliary Fuel at 77 °F (ρ_d) =		0.0408 lb/ft ³
Heat Input of auxiliary fuel (-Δh _{cal}) =		21,502 Btu/lb
Density of waste gas at 77 °F (ρ_w) =		0.0739 lb/ft ²
Mean Heat Capacity of Air (C _{pmair})	(For thermal oxidizers)	0.255 Btu/lb °F

Parameter	Equation	Calculated Value Units	Value Units
Sum of volume fraction of combustible components =	$= \langle \Sigma x_i \rangle =$	2,001 ppmv	
Lower Explosive limit of waste gas (LEI $_{\rm mk})$	$= \ \underline{\Sigma}((\mathbf{x}_i)/((\underline{\Sigma}\mathbf{x}_i)\times LEL_j)) \ ^{-1} =$	11,000 ppmv	
	Where \boldsymbol{x}_i is the volume fraction and LEL, the lower explosive limit for each combustible component in the waste gas.		
% LEL _{mix}	= (Total Combustible Conc. In Mixture/LEL $_{\rm min}) \times 100$ =	18.19 percent	* Note: Since the LEL of the waste gas stream is below 25%, no dilution air is needed.
Dilution Factor	$= (LEL_{mix} \times 0.249)/(\Sigma \times) =$	Not applicable	
Lower Explosive Limit (LEL) of waste gas after addition of dilution air	$^{\prime}$ = (Total Adjusted Conc. With Dilution Air/LEI_mu) \times 100 =	Not Applicable	
Inlet volumetric flow rate(Qwi) at 77°F and 1 atm.	(From Data Entry Tab) =	20,000 scfm	
Oxygen Content of gas stream	$= 100 - (\sum x_i \times 100/10^6) =$	20.86 percent	
Fan Power Consumption (FP)	$= [(1.17 \times 10^{-4}) \times Q_{wi} \times \Delta P]/\epsilon$	74.1 kW	
Q _{wn}	∞ Q _{wi} =	20,000 scfm	
Operating temperature of oxidizer (T _f)	(From Data Entry Tab)	1,900 °F	
Temperature of waste gas at outlet to preheater (T _{wo})	= Heat Recovery × (T _n - T _{wi}) + T _{wi} =	1,353 °F	Note: this temperature is relevant for incinerators, but not for
Temperature of flue gas exiting the regenerative oxidizer (T_{fn})	$= T_{f_1} - 0.95(T_{f_1} - T_{wi}) =$	168 °F	
Heat Input of waste gas (-Δh _{cw})			
	$= \sum (-\Delta h_i) x_i$		
	Where $(-\Delta h_c)$ is the heat of combustion and x, the fraction of component "i" at 77 °F.	8.55 Btu/scf	115.7 Btu/lb
			Note: Negative value for calculated Qaf
Estimated Auxiliary Fuel Row (Q _d) at 77 °F and 1 atm.	(Calculated using Equation 2.45 in Appendix B)	-155.58 scfm	indicates that the waste gas is sufficient
Auxiliary fuel Energy Input =		0 Btu/min	to support combustion.
Minimum Energy required for combustion stabilization =	= 5% × Total Energy Input = $0.05 \times \rho_n \times Q_n \times C_{pert} \times (T_n - T_{ref}) =$	33,410 Btu/min	
Is the calculated auxiliary fuel sufficient to stabilize combustion?	(Note; If the	No	Note: Additional auxiliary fuel equivalent
auxiliary ruel energy input > 5% of Fotal Energy input, oren trie auxil	ary ide is sufficienc.)		to 5% of total energy input is required to
Auxiliary fuel flow (Qaf) (adjusted for fuel required for combustion	stabilization)at 77°F and 1 atm. =	38 scfm	stabilize combustion.
Total Volumetric Throughput (Q _{tot}) at 77 'F and 1 atm.	$= \mathbf{Q}_{\mathbf{f}_1} = \mathbf{Q}_{\mathbf{w}_0} + \mathbf{Q}_{\mathbf{b}} + \mathbf{Q}_{\mathbf{b}_1} = \mathbf{Q}_{\mathbf{w}_1} + \mathbf{Q}_{\mathbf{b}_1} =$	20,038 scfm	
Capital Recovery Factor:			1
Parameter	Equation	Calculated Value	(
Capital Recovery Factor (CRF) =	i (1+i)"/(1+i)" - 1 =	0.0944	
	Where n = Equipment Life and i= Interest Rate		

	Cost Estimate			
	Direct Costs			
	Total Purchased equipment costs (in 2024 dollars)			
ncinerator + auxiliary equipment" (A) =				
quipment Costs (EC) for Regenerative Oxidizer	=(2.204 x 100,000 + 11.57 Qtot) x (2024 CEPI/1999 CEPCI) =	\$815,417 in 2024 dollars		
nstrumentation ^b =	0.10 × A =	\$81 542		
ales taxes =	0.085 × A =	\$69.310		
reight =	0.05 × A =	\$40,771		
	Total Purchased equipment costs (B) =	\$1,007,040 in 2024 dollars		
ootnotes Auxilianu aquiament includes aquiament (e.g., duct work) r	armally not included with unit furnished by incinerator yender			
 Includes the instrumentation and controls furnished by the 	incinerator vendor.			
,				
	Direct Installation Costs (in 2024 dollars)			
oundations and Supports =	0.08 × B =	\$80,563		
andling and Erection =	0.14 × B =	\$140,986		
ectrical =	0.04 × B =	540,282		
ping =	0.02 × B =	\$20,141		
ainting -	0.01 × B -	\$10,070		
ite Preparation (SP) -	0.01 × 0 -	\$10,070		
uildings (Bldg) =		50		
enanity (pied)	Total Direct Installaton Costs =	\$302.112		
otal Direct Costs (DC) =	B + C + SP + Bldg =	\$1,309,153 in 2024 dollars		
	Total Indirect Installation Costs (in 2024 dollars)			
	0.40D	¢100.704		
ngineering =	0.10 × B =	\$100,704		
ontractor fees -	0.05 × B =	\$100.704		
tart-up -	0.10 × B =	\$20 1/1		
erformance test =	0.01 × B =	\$10.070		
		· · · · · · ·		
	Total Indirect Costs (IC) =	\$281,971		
Continency Cost (C) =	CF(IC+DC)=	\$159.112		
Total Capital Investment =	DC + IC +C =	\$1,750,236 in 2024 dollars		
	Direct Annual Costs			
nnual Electricity Cost	- Annual Electricity Licego & Operating Hours (vear & Electricity Price -	617 334		
ninual Electricity Cost	- Annual Electricity Osage × Operating Hours/year × Electricity Frice -	\$17,324		
ninual Fuel Costs for Natural Gas	 Cost_{bull} × Luci osage nate × oo miny m × Operating hours/year Operator = 0 Ehours (chift + Lohar Pata + (Operating hours/ chift) 	\$40,541 \$2,050		
perating Labor	Operator = 0.5nours/shift × Labor Kate × (Operating hours/s hours/shift) Supervisor = 15% of Operator	\$2,959		
laintenance Costs	Jabor – 0.5 hours/shift x Jabor Rate x (Operating Hours/8 hours/shift)	\$3.403		
aintenance costs	Materials = 100% of maintenance labor	\$3,403		
		4-13-10-24 (1-1)		
irect Annual Costs (DC) =		\$73,874 in 2024 dollars		
	Indirect Annual Costs			
	= 60% of sum of operating, supervisor, maintenance labor and maintenance			
verhead	materials	\$6,126		
dministrative Charges	= 2% of TCI	\$35,005		
roperty Taxes	= 1% of TCI	\$17,502		
isurance	= 1% of TCI	\$17,502		
apital Recovery	= CRF[TCI-1.08(cat. Cost)]	\$165,210		
ndirect Annual Costs (IC) =		\$241,345 in 2024 dollars		
otal Annual Cost =	DC + IC =	\$315,219 in 2024 dollars		
	Cost Effectiveness			
	Corteneos			
Cost	Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HAP Pollutants Destroyed)			
otal Annual Cost (TAC) =	\$315,219	\$315,219 per year in 2024 dollars		
OC/HAP Pollutants Destroyed =	8.9	8.9 tons/year		
Cost Effectiveness =	\$35,300	\$35,300 per ton of pollutants removed in 2024 dollars		